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Abstract Rainfall links atmospheric and surficial processes and is one of the most important
hydrologic variables. We apply support vector regression (SVR), which has a high generali-
zation capability, to construct a rainfall forecasting model. Before construction of the model, a
self-adaptive data analysis methodology called ensemble empirical mode decomposition
(EEMD) is used to preprocess a rainfall data series. In addition, the phase-space reconstruction
method is implemented to design input vectors for the forecasting model. The proposed hybrid
model is applied to forecast the monthly rainfall at a weather station in Changchun, China as a
case study. To demonstrate the capacity of the proposed hybrid model, a typical three-layer
feed-forward artificial neural network model, an auto-regressive integrated moving average
model, and a support vector regression model are constructed. Predictive performance of the
models is evaluated based on normalized mean squared error (NMSE), mean absolute percent
error (MAPE), Nash–Sutcliffe efficiency (NSE), and the coefficient of correlation (CC).
Results indicate that the proposed hybrid model has the lowest NMSE and MAPE values of
0.10 and 14.90, respectively, and the highest NSE and CC values of 0.91 and 0.83, respec-
tively, during the validation period. We conclude that the proposed hybrid model is feasible for
monthly rainfall forecast and is better than the models currently in common use.
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1 Introduction

Rainfall is one of the most important aspects of the hydrologic cycle because it links
atmospheric and surficial processes. Over the past few decades, rainfall forecasting has been
of great concern to researchers (Maheswaran and Khosa 2014; Wu et al. 2015; George et al.
2016). Broadly, there are two main approaches to rainfall forecasting: (1) a knowledge-driven,
physically-based modeling approach; and (2) a data-driven, empirically-based or ‘black-box’
modeling approach (Hong and Pai 2006; Solomatine and Ostfeld 2008). The former approach
is based on the physical mechanisms of hydrologic processes, and is usually based on the
characteristics and scientific understanding of a specific catchment, whereas the latter approach
is designed to identify relationships between input and output without considering the internal
structure of physical processes (Chau et al. 2005; He et al. 2014).

A knowledge-driven modeling approach can involve detailed description of the mecha-
nisms of hydrological processes. However, the data required (e.g., temperature, pressure,
humidity) are extensive and sometimes unavailable (Hong 2008). Furthermore, it is challeng-
ing to extend a particular knowledge-driven model to even a slightly different research area
(Sivakumar et al. 2002). The data-driven modeling approach, which uses time series data, is
relatively simple and compatible across regions, and has been widely employed in the forecast
of hydrologic variables (Kaur and Jothiprakash 2013). The artificial neural network (ANN)
and Box–Jenkins methods (Box and Jenkins 1970), which include an auto-regressive moving
average (ARMA) model, an auto-regressive integrated moving average (ARIMA) model, an
auto-regressive (AR) model, and a moving average (MA) model, have been the most widely
used data-driven models for the last few decades (Paolo et al. 1993; Valverde Ramírez et al.
2005; Chua and Wong 2011; Farajzadeh et al. 2014). The results of the previous work suggest
that the ANN models perform better when variables are nonlinear, while the Box–Jenkins
methods are more successful with linear variables.

Support vector machines (SVM), developed by Vapnik (1995), are learning machines based
on statistical learning theory that adopt the structural risk minimization principle rather than the
empirical risk minimization principle (the principle followed by ANN). According to previous
studies (e.g. Sivapragasam et al. 2001; Liong and Sivapragasam 2002), SVM can better solve
problems of small sample size, overlearning, nonlinearity, high dimensionality, and local
minima than ANN can, and has high generalization capability (Wang et al. 2013). The
regression model of SVM, called support vector regression (SVR), has been successfully
employed to solve forecasting problems with hydrologic variables, such as rainfall in general
(Hong and Pai 2006; Feng et al. 2015), typhoon rainfall (Lin et al. 2009), groundwater level
(Suryanarayana et al. 2014), rainfall runoff (Wang et al. 2013), real-time daily flow
(Maheswaran and Khosa 2013), lake water level (Khan and Coulibaly 2006), and riverine
suspended sediment load (Nourani et al. 2016). However, there are problems with the
employment of SVR, primarily in two aspects. Firstly, an assumption of this method is the
stationarity of the original data. Unfortunately, in reality, time series data rarely adhere to this
assumption due to fluctuation and intrinsic complexity (Hu et al. 2013a). Therefore, for more
accurate forecasting results, it is crucial to apply suitable data preprocessing before prediction.
Secondly, the design of the input vector is important for the time series prediction engine, but it
is usually defined in an arbitrary way based mainly on experience.

For data preprocessing, wavelet transform (WT) has been found to be a good choice in
recent years (He et al. 2014; Suryanarayana et al. 2014; Feng et al. 2015). However, recent
studies suggest that WT suffers from certain drawbacks (Zhang and Zhou 2013). Empirical
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mode decomposition (EMD), first introduced by Huang et al. (1998), is a technique that offers
a different method for data preprocessing. Based on local characteristic time scales of a signal,
EMD can self-adaptively decompose a complex signal into a series of intrinsic mode functions
(IMFs) and one residue and remove the noise. IMFs represent the natural oscillatory mode
embedded in the signal; each is simple and has its corresponding physical meaning and
frequency, which allow for better understanding of the mechanics behind the signal.
However, the frequent occurrence of mode mixing hampers its application. Wu and Huang
(2009) added finite white noise to signals to overcome this drawback of EMD, and called this
method ensemble empirical mode decomposition (EEMD). EEMD has captured scholars’
attention globally in a wide range of fields; e.g., Bao et al. (2012) combined EEMD and SVM
to forecast air passenger traffic; Wang et al. (2012) compared application of EMD and EEMD
on time–frequency analysis of seismic signals, and demonstrated that the time–frequency
spectrum obtained by EEMD more realistically reflects real geology than that obtained by
EMD; Hu et al. (2013a) applied a hybrid EEDM and SVM approach to forecast wind speed
time series data, and the results indicated an observable improvement to forecasting validity;
Wang et al. (2013) implemented a PSO-SVM-EEMD model to forecast annual rainfall runoff,
and found that this methodology can significantly improve rainfall-runoff forecasting at the
studied station.

Numerous studies in recent years have confirmed the existence of chaotic behavior in
hydrologic processes, including runoff, rainfall, floods, lake level, and evaporation (e.g.,
Damle and Yalcin 2007; Dhanya and Nagesh Kumar 2011a, b; Hu et al. 2013b; Khatibi
et al. 2014). Based on chaos theory, a random-seeming series of chaotic behaviors can be
attributed to deterministic rules (Ng et al. 2007). Under Takens’ embedding theorem (Takens
1981), phase-space reconstruction can provide a favorable solution to fully uncover the
underlying dynamics of a deterministic chaotic system by building an m-dimensional space.
With this method, the design of the input vector can be solved. Kouhi et al. (2014) and
Baydaroğlu and Koçak (2014) applied this approach to prepare input data for time series
prediction and were successful.

The present study seeks to address both problems in rainfall time series prediction, i.e., the
non-stationarity of rainfall time series data, and the design of input vectors. Firstly, instead of
WT, a relatively new data preprocessing method, EEMD, is employed to decompose the
original rainfall data into a series of IMFs and one residue, thereby transforming non-
stationarity into stationarity. Subsequently, the phase-space reconstruction method is utilized
to build an m-dimensional space to recover the dynamics of each IMF to prepare the input data
for prediction. Based on the above techniques, SVR, a promising nonlinear regression learning
machine, is employed to forecast future values of each IMF and residue. These results can be
assembled to determine the final forecast results of rainfall.

The present study is the first to combine SVR, EEMD, and the phase-space reconstruction
method.

2 Study Area and Data

Changchun, the capital city of Jilin Province in northeastern China, lies between the latitudes
of 43°05’ N and 45°15’ N, and between longitudes of 124°18’ E and 127°05’ E, at an
elevation between 250 m and 350 m. Located on the Songliao Plain, the hinterland of the
Northeast China Plain on the east coast of Eurasia, Changchun is the natural geographical
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center of northeastern China, which has a total area of 20,604 km2 and a total population of
790 million. The Yitong River runs through the city from south to north. A map of Jilin
Province is shown in Fig. 1. This region lies in the north temperate continental monsoon
climate zone, and rainfall is distributed unevenly throughout the year. Average annual rainfall
ranges from 522 to 615 mm, and summer precipitation accounts for more than 60 % of that
amount. Observed monthly rainfall from the Changchun weather station from 1951 to 2013
was selected as the dataset for this study.

3 Methodology

3.1 SVR

SVM is a novel learning machine with a high generalization capability. SVR, a subcategory of
SVM, is proposed to solve the regression problem present in SVR. The concept of SVR is to

Fig. 1 Location map of Changchun and the surrounding area
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map nonlinearly the original data x into a high-dimensional feature space (or even an infinite
dimensional space), and then to perform a linear regression in the feature space (Wang et al.
2013). Given a set of training data (x1, y1),…, (xl, yl) where xi∈Rn is the input vector and yi∈R
for i =1,…, l, represents the respective target value (or output value), and l denotes the number
of elements in the training data set. SVR estimates the output at a prediction point xp as

ŷ xp
! "

¼
Xl

i¼1

αi−αi
*! "
K xp⋅xi
! "

þ b

K xp; xi
! "

¼ φ xp
! "

;φ xið Þ
# $

ð1Þ

where α and α* are the dual Lagrange multipliers, b is the bias term, and K(xp, xi) is the kernel
function. In general, there are several types of kernel function, namely linear, polynomial and
radial basis function (RBF). RBF has become the most popular of these and is adopted in the
present study as follows:

K x; xið Þ ¼ exp −γ x−xik k2
% &

ð2Þ

where γ is an unknown parameter.

3.2 EEMD

The predecessor of EEMD is EMD, which was first introduced by Huang et al. (1998). The
essence of this method is to process data with axial symmetry and decompose it into a series of
IMFs in descending order by signal frequency. An IMF must satisfy the following conditions:

a) In the whole data set, the number of extrema and the number of zero-crossings must either
equal or differ by at most one.

b) At any point, the mean value of the envelope defined by local maxima and the envelope
defined by the local minima is zero.

IMFs can be extracted from the data series X(t) according to a so-called sifting process
(Huang et al. 1998). After the process of EMD, the original time series data X(t) can be
expressed as a sum of IMFs and one residue:

X tð Þ ¼
Xn

i¼1

Ci þ rn ð3Þ

where n is the number of IMFs, Ci represents the ith generated IMF, and rn denotes the final
residue that represents the overall trend of the data series X(t).

Despite the wide acceptance of EMD, the frequent occurrence of mode mixing seems to be
a significant drawback. This problem implies that either a single IMF consisting of signals of
widely disparate scales, or a signal of the a specific scale that resides in different IMF
components, and intermittency of the analyzed signal is often the result (Wang et al. 2012).
To overcome this problem, Wu and Huang (2009) developed EEMD, which adds white noise
into the original data, and thereby signals of different scales can be automatically assigned to
proper scales of reference established by the white noise (Wang et al. 2012), which reduces the
occurrence of mode mixing.

Monthly rainfall forecasting using EEMD-SVR



3.3 Phase-Space Reconstruction

The phase-space reconstruction method can fully uncover the underlying dynamics of a
deterministic chaotic system by reconstructing the phase space, which provides a simplified,
multi-dimensional representation of a single-dimensional nonlinear time series. By this meth-
od, for a scalar time series Xi where i =1, 2, …, N, the dynamics can be fully embedded in m-
dimensional phase space wherein the components of each state vector Yj are defined through
the delay coordinates:

Y j ¼ X j; X jþτ ; X jþ2τ ; …; X jþ m−1ð Þτ
! "

ð4Þ

where j=1, 2,…,N− (m−1)τ/Δt; τ is the delay time, which is the average length of memory
of the chaotic system; m is the embedding dimension, which can be considered the minimum
number of state variables required to describe the system, and Δt represents sampling time.
Phase-space reconstruction in a dimension m allows one to interpret the underlying dynamics
in the form of an m-dimensional map FT, that is,

Y jþT ¼ FT Y j
! "

ð5Þ

where Yj+T is the vector describing the state of the system at time j+T (the future state), and T
refers to the lead time. Thus, we can design the input data for regression modeling. Here, the
m-dimensional map FT is constructed through SVR.

The determination of the two parameters, i.e., τ and m, is crucial for the correct identifi-
cation of hidden dynamics, and there are a variety of ways to estimate them. The autocorre-
lation method and mutual information method (Frazer and Swinney 1986) are frequently-used
approaches to identify τ; the correlation dimension method (Grassberger and Procaccia 1983),
the false nearest-neighbor algorithm (FNN) (Kennel et al. 1992), and the Cao method (Cao
1997) are popular approaches to identify m. According to previous studies (e.g., Hu et al.
2013b; Guo et al. 2014), the mutual information method and the Cao method are the most
favorable of these techniques and are adopted for this study.

After estimation of m and τ, the following step is to identify the presence of chaotic
behavior. The Lyapunov exponent λ is the most commonly used indicator of chaotic behavior.
To be determined chaotic, the largest Lyapunov exponent, λmax, must be positive. There are a
multitude of approaches to calculate λ, such as the p-norm method, the Wolf method, the
Jacobian method, and the small data sets method (Rosenstein et al. 1993). Because the small
data sets method has relatively high computational efficiency and accuracy (Rosenstein et al.
1993, Hu et al. 2013b), it is employed here to compute λmax.

4 Model Constructions

For this study, first, EEMD is employed as a data preprocessing method for monthly rainfall
data taken at the Changchun weather station from 1951 to 2013. Secondly, for the design of
input data, phase-space reconstruction is used, and the delay time τ and embedding dimension
m of each IMF (and the residue) are determined using the mutual information method and the
Cao method respectively. Subsequently, we construct the nonlinear regression model of each
IMF (and the residue) independently by SVR to forecast future values. Finally, by assembling
the forecasted values of each IMF (and the residue) into an ensemble result, we attain the
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predictions of monthly rainfall values. Figure 2 is a flow chart that illustrates the model
construction procedure.

4.1 Data Preprocessing With EEMD

Before using EEMD there are two important parameters to set, i.e., the number of the ensemble
and the amplitude of the added white noise. Wu and Huang (2009) established a statistical rule
to control the effect of noise:

en ¼
εffiffiffiffi
N

p ð6Þ

where N is the number of ensemble members, ε represents the amplitude of the added noise,
and en is the final standard deviation, which is defined as the difference between the input
signal and the corresponding IMFs (Wu and Huang 2009). Here, as in previous studies (e.g.
Wu and Huang 2009; Wang et al. 2013), N and en are set as 100 and 0.2, respectively.

Decomposition results are shown in Fig. 3. There are eight independent IMF compositions
and one residue.

4.2 Phase-Space Reconstruction

For this study, the mutual information method and the Cao method are used to determine the
parameters τ and m respectively. The determination results for IMF1 and IMF2 are shown in
Figs. 4 and 5 as examples. Table 1 shows the determination results for IMF1, IMF2,…, IMF8,
residue, and the original data.

Fig. 2 Flow chart of the model
construction procedure
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After determination of the above two parameters, the small data sets method is applied to
calculate λmax of each IMF, residue, and the original data. The computed λmax for IMF1,
IMF2,…, IMF8, residue and the original data are also shown in Table 1. All of the largest
Lyapunov exponents are positive, which indicates chaos. The one-dimensional data series can
be assembled into the following m-dimension matrix:

X ¼

x1 x1þτ … x1þ m−1ð Þτ
x2 x2þτ … x2þ m−1ð Þτ
… … … …

xn− m−1ð Þτ xn− m−1ð Þτþ1 … xn−1

2

664

3

775;

Y ¼

x2þ m−1ð Þτ
x3þ m−1ð Þτ

…
xn

2

664

3

775

ð7Þ

where X is the input vector and Y is the output vector. The lead time is set to be 1 month.

Fig. 3 Decomposition by EEMD of monthly rainfall from January 1951 to December 2013 at the Changchun
weather station

Fig. 4 Mutual information results plot of IMF1 a and IMF2 b for the determination of time delay
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4.3 SVR Model

Here, the SVR model is used independently to forecast the future values of each IMF (and the
residue). Data from the first 50 years (1951–2000, 600 samples in total) are used as the training
dataset, while data from the latter 13 years (2001–2013, 156 samples in total) are used as a
validating dataset. With the training dataset, the grid search method is employed to find
optimal parameters of. C and γ for SVR, and the insensitive loss function ε is set to “0.01”
based on prior experience. Then, by assembling the outcomes of each SVR model, we can
obtain the ensemble forecast rainfall value. The optimization results of the SVR parameters are
shown in Table 1.

5 Performance Evaluation

In the present study, four main criteria are used to measure the models’ forecasting perfor-
mance. The normalized mean squared error (NMSE) and the mean absolute percent error
(MAPE), given by Eq. (8) and Eq. (9) respectively, are used to measure the accuracy of
forecasting. The smaller the value of NMSE and MAPE, the more accurate the model

Fig. 5 Cao method results plot of IMF1 a and IMF2 b for the determination of embedding dimension

Table 1 Parameter results for phase-space reconstruction and SVR model

Data τ m λmax γ C

IMF1 6 8 0.100 0.8123 4.2871

IMF2 3 11 0.104 0.4353 2.0000

IMF3 3 6 0.036 1.4142 4.0000

IMF4 5 6 0.035 0.5359 9.8492

IMF5 6 10 0.013 0.5000 27.8576

IMF6 13 6 0.020 0.2679 51.9842

IMF7 9 5 0.024 3.0314 294.0668

IMF8 4 5 0.017 5.6569 415.8732

Residue 3 3 0.014 0.5359 724.0773

Original Data 5 3 0.0003 2.1435 0.2500
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determined to be. In addition, the efficiency of the model is measured in terms of the Nash–
Sutcliffe efficiency coefficient (NSE) and the coefficient of correlation (CC), given by Eq. (10)
and Eq. (11) respectively. NSE is a frequently used index for evaluating the predictive ability
of hydrological models. The higher value of NSE (maximum value is 1), the higher the
model’s forecast power is. Similarly, a model with a higher value of CC (to a maximum value
of 1) can better capture the average change tendency of the cumulative data series (Hong
2008), which means a high degree of collinearity. The questions for these evaluation methods
are as follows:

NMSE ¼ 1

nδ2
Xn

i¼1

ai− f ið Þ2 ð8Þ

MAPE ¼ 1
n

Xn

i¼1

ai− f i
ai

((((

(((( ð9Þ

NSE ¼ 1−

Xn

i¼1

ai− f ið Þ2

Xn

i¼1

ai−a
% &2

ð10Þ

CC ¼

Xn

i¼1

ai−a
% &

f i− f
% &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ai−a
% &2

*
Xn

i¼1

f i− f
% &2

vuut
ð11Þ

where δ2 ¼ 1
n−1 ∑

n

i¼1
ai−að Þ2, and n is the number of forecasting periods; ai and fi denote the

actual and forecast rainfall values respectively; and ā and f represent the actual and forecast
mean rainfall values respectively.

6 Results and Discussions

In order to evaluate the advantage of the proposed hybrid model (I), a typical three-layer feed-
forward ANN model (II) and an ARIMA model (III) are constructed as benchmark models.
The two benchmark models also use EEMD to pre-process the original monthly rainfall data
and adopt the phase-space reconstruction method to design input vectors, and the training and
validating data sets are identical across all models. Because the only difference between
models I, II and III is which forecasting technique is used, SVR, ANN, or ARIMA, by
comparing their results, we can ascertain which is the most accurate. Additionally, a SVR
model is constructed to use the original monthly rainfall series (IV), with phase-space
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reconstruction applied but EEMD omitted, in order to evaluate the effect of EEMD on forecast
accuracy by applying only phase-space reconstruction and comparing its results with model I.

Table 2 illustrates the evaluation results for the four different models in terms of the four
indices mentioned above. These results indicate the following: 1) the proposed hybrid model
(I) has the lowest NMSE and MAPE value and the highest NSE and CC value, at both the
training and validation stage, which demonstrates that the proposed model outperforms the
other three models in forecasting monthly rainfall. 2) By comparing the results for models I
and II, we observe that relative to model II, for the proposed hybrid model (I), NMSE and
MAPE decreased by 87.04 % and 45.76 % respectively in the training stage, and by 89.89 %
and 42.40 % respectively in the validation stage. CC and NSE were improved by 9.47 % and
100%respectively in the training stage, and by 37.88 % and 84 % respectively in the validation
stage. Similarly, by comparing model I and III, we observe that the relative to model III, the
proposed hybrid model (I) presents decreases of 75.76 % and 69.05 % in NMSE and MAPE
respectively in the training stage, and 73.68 % and 68.81 in the validation stage; and was
improved by 6.74 % and 19.48 % in CC and NSE respectively in the training stage, and by
10.98 % and 33.87 % in the validation stage. These results show that the SVR model
outperforms the commonly used nonlinear regression models ANN and ARIMA. 3) By
comparing models I and IV, we observe that the use of EEMD was responsible for a
68.18 % and 26.11 % reduction in NMSE and MAPE respectively in the training stage and
a 67.74 % and 35.27 % reduction in the same in the validation stage. Improvements in the
forecast results represented by CC and NSE values were approximately 5.55 % and 10.84 %
respectively at the training stage, and 8.79 % and 20.29 % respectively in the validation stage,
respectively. These results indicate that the pre-processing method of EEMD improved the
forecasting ability of the SVR model. Figure 6 shows a comparison of the four models during
the validation period.

7 Conclusions

Our findings support the employment of a hybrid model, EEMD-SVR based on phase-space
reconstruction, to overcome two key problems in rainfall forecasting and improve predictive
accuracy. To reasonably evaluate the proposed model’s performance, a typical three-layer

Table 2 Performance indices of models for rainfall forecasting in training and validating datasets

Model Training data Validating data

NMSE MAPE (%) CC NSE NMSE MAPE (%) CC NSE

I 0.07 10.50 0.95 0.92 0.10 14.90 0.91 0.83

II 0.54 19.36 0.86 0.46 0.99 25.87 0.66 −0.01
III 0.29 33.93 0.89 0.77 0.38 47.78 0.82 0.62

IV 0.22 14.21 0.90 0.83 0.31 23.02 0.83 0.69

I- EEMD-SVR based on phase-space reconstruction

II- EEMD-ANN based on phase-space reconstruction

III- EEMD-ARIMA based on phase-space reconstruction

IV- SVR based on phase-space reconstruction with the original monthly rainfall data

Monthly rainfall forecasting using EEMD-SVR



Fig. 6 Observed and forecast monthly rainfall during the validation period for four models
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feed-forward ANN model, an ARIMA model, and a SVR model were constructed as
benchmark models; the first two models are based on data decomposed by EEMD, the latter
is based on the original data, and all the three models use phase-space reconstruction. The
models we constructed are based on real monthly rainfall data from a weather station in
Changchun, China. The following conclusions were reached:

1. Based on the structural risk minimization principle, SVR has better forecast results than
the other assessed nonlinear regression models, which give it the advantage for rainfall
forecasting.

2. By decomposing the data series into a series of independent IMFs and one residue, the
data preprocessing method EEMD improved the forecast capacity of the SVR model,
which indicates that EEMD is suitable for nonlinear and non-stationary hydrologic data
analysis.

3. By applying phase-space reconstruction, the input vector can be designed in a certain way
as an alternative to the arbitrary method.

4. The proposed hybrid model is feasible for monthly rainfall forecasting at the Changchun
weather station.

Future study should focus on comparison of EEMDwith other data preprocessing methods.
Additionally, values of the parameters for phase-space reconstruction (i.e., delay time and
embedding dimension) should be carefully determined using a variety of methods instead of
one alone as is commonly done.
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